Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.096
Filtrar
1.
Sci Rep ; 14(1): 10540, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719945

RESUMEN

Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.


Asunto(s)
Bacteriófagos , Bivalvos , Branquias , Metagenómica , Animales , Metagenómica/métodos , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Branquias/microbiología , Branquias/virología , Branquias/metabolismo , Bivalvos/microbiología , Bivalvos/virología , Bivalvos/genética , Perfilación de la Expresión Génica , Transcriptoma , Viroma/genética , Bacterias/genética , Bacterias/clasificación , Simbiosis/genética , Metagenoma
2.
Artículo en Inglés | MEDLINE | ID: mdl-38698094

RESUMEN

The popularization and use of green production technology is the key to promoting the sustainable development of agriculture. Exploring the path of promoting farmers' adoption of green production technology has important theoretical and practical significance for promoting the green transformation of agriculture and realizing the high-quality development of agriculture. This study examined the impact of contract performance on the adoption of green production technology in the farmland transfer market based on the characteristics of green production technology. An empirical test was conducted using survey data from Heilongjiang, Henan, Zhejiang, and Sichuan Provinces, which differ in agricultural resource endowment and economic development. The results demonstrated that farmland area was positively associated with the number of green production technologies adopted by farmers and use of straw returning, subsoiling, and soil testing for formula fertilization technology. Moreover, improving the performance rates of farmland transfer contracts strengthened the promotional effect of operation scale on green production technology adoption. Using either contract execution or dispute resolution rates to measure contract performance promoted the adoption of green production technology, particularly for large-scale farmers. Therefore, in the publicity and promotion of agricultural green production technology, the government should not only formulate differentiated promotion strategies and support policies based on resource endowment, but also focus on the construction of rural legal systems, which are helpful for building and maintaining a good farmland market order and performance environment, and create conditions for the durability and stability of technology adoption.

3.
Sci Total Environ ; : 173053, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723973

RESUMEN

Nitrochlorobenzene (NCB) is very common in pesticide and chemical industries, which has become a major problem in soil environment. However, the remediation of NCB contaminated soil is received finite concern. Using biochar as a substrate for nanoscale-zero valent iron (nZVI/p-BC) to activate peroxodisulfate (PDS), a novel heterogeneous oxidative system had been applied in the current study to remediate NCB contaminants in soil. The degradation efficiencies and kinetics of m-NCB, p-NCB, and o-NCB by various systems were contrasted in soil slurry. Key factors including the dosage of nZVI/p-BC, the molar ratio of nZVI/PDS, initial pH and temperature on degradation of NCB were further examined. The results confirmed that the nZVI/p-BC/PDS displayed the remarkable performance for removing NCB compared with other systems. Higher temperature with nZVI/PDS molar ratio of 2:1 under the acidic condition favored the reduction of NCB. The treatment for NCB with optimal conditions were evaluated for the engineering application. The mechanism of nZVI/p-BC/PDS indicated that electron transfer between p-BC and nZVI was responsible for activation of PDS, generating active species (SO4•-, •OH and 1O2) via both the free and non-free radical pathways. Experimental results revealed prominent availability of nZVI/p-BC/PDS system in remediation of actual contaminated field by NCB.

4.
Mar Pollut Bull ; 203: 116424, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692004

RESUMEN

Bloom-induced macroalgal enrichment on the seafloor can substantially facilitate dissolved sulfide (DS) production through sulfate reduction. The reaction of DS with sedimentary reactive iron (Fe) is the main mechanism of DS consumption, which however usually could not effectively prevent DS accumulation caused by pulsed macroalgal enrichment. Here we used incubations to investigate the performance of Fe-rich red soil for buffering of DS produced from macroalgae (Ulva prolifera)-enriched sediment. Based on our results, a combination of red soil additions (6.8 kg/m2) before and immediately after pulsed macroalgal deposition (455 g/m2) can effectively cap DS within the red soil layer. The effective DS buffering is mainly due to ample Fe-oxide surface sites available for reaction with DS. Only a small loss (4 %) of buffering capacity after 18-d incubation suggests that the red soil is capable of prolonged DS buffering in macroalgae-enriched sediments.

5.
Plant Cell Environ ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695280

RESUMEN

There is often a trade-off effect between different agronomic traits due to gene pleiotropy, leading to a negative correlation between yield and resistance. Consequently, using gene-editing techniques to develop superior traits becomes challenging. Genetic resources that defy this constraint are scarce but hold great potential as targets for improvement through the utilisation of CRISPR. Transcription factors are critical in modulating numerous gene expressions across diverse biological processes. Here, we found that the trihelix transcription factor SlGT30 plays a role in drought resistance and tomato fruit development. We edited the SlGT30 gene with CRISPR/Cas9 technology and found that the knockout lines showed decreased stomata density in the leaves and large fruits. Subsequent examination revealed that cell ploidy was impacted in the leaves and fruits of SlGT30 knockout lines. SlGT30 knockout affected cell size through the endoreduplication pathway, manifested in decreased stomata density and reduced water loss. Consequently, this resulted in an enhancement of drought resistance. For the fruit, both cell size and cell number increased in the fruit pericarp of knockout lines, improving the fruit size and weight accordingly. Therefore, SlGT30 represents a promising candidate gene for gene editing in breeding practice.

6.
Geroscience ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696055

RESUMEN

The oldest-old population, those aged ≥ 80 years, is the fastest-growing group in the United States (US), grappling with an increasingly heavy burden of dementia. We aimed to dissect the trends in dementia prevalence, mortality, and risk factors, and predict future levels among this demographic. Leveraging data from the Global Burden of Disease Study 2019, we examined the trends in dementia prevalence, mortality, and risk factors (with a particular focus on body mass index, BMI) for US oldest-old adults. Through decomposition analysis, we identified key population-level contributors to these trends. Predictive modeling was employed to estimate future prevalence and mortality levels over the next decade. Between 1990 and 2019, the number of dementia cases and deaths among the oldest-old in the US increased by approximately 1.37 million and 60,000 respectively. The population growth and aging were highlighted as the primary drivers of this increase. High BMI emerged as a growing risk factor. Females showed a disproportionately higher dementia burden, characterized by a unique risk factor profile, including BMI. Predictions for 2030 anticipate nearly 4 million dementia cases and 160,000 related deaths, with a marked increase in prevalence and mortality anticipated among those aged 80-89. The past 30 years have witnessed a notable rise in both the prevalence and mortality of dementia among the oldest-old in the US, accompanied by a significant shift in risk factors, with obesity taking a forefront position. Targeted age and sex-specific public health strategies that address obesity control are needed to mitigate the dementia burden effectively.

7.
Front Neurosci ; 18: 1181670, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737099

RESUMEN

Given its high morbidity, disability, and mortality rates, ischemic stroke (IS) is a severe disease posing a substantial public health threat. Although early thrombolytic therapy is effective in IS treatment, the limited time frame for its administration presents a formidable challenge. Upon occurrence, IS triggers an ischemic cascade response, inducing the brain to generate endogenous protective mechanisms against excitotoxicity and inflammation, among other pathological processes. Stroke patients often experience limited recovery stages. As a result, activating their innate self-protective capacity [endogenous brain protection (EBP)] is essential for neurological function recovery. Acupuncture has exhibited clinical efficacy in cerebral ischemic stroke (CIS) treatment by promoting the human body's self-preservation and "Zheng Qi" (a term in traditional Chinese medicine (TCM) describing positive capabilities such as self-immunity, self-recovery, and disease prevention). According to research, acupuncture can modulate astrocyte activity, decrease oxidative stress (OS), and protect neurons by inhibiting excitotoxicity, inflammation, and apoptosis via activating endogenous protective mechanisms within the brain. Furthermore, acupuncture was found to modulate microglia transformation, thereby reducing inflammation and autoimmune responses, as well as promoting blood flow restoration by regulating the vasculature or the blood-brain barrier (BBB). However, the precise mechanism underlying these processes remains unclear. Consequently, this review aims to shed light on the potential acupuncture-induced endogenous neuroprotective mechanisms by critically examining experimental evidence on the preventive and therapeutic effects exerted by acupuncture on CIS. This review offers a theoretical foundation for acupuncture-based stroke treatment.

8.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732232

RESUMEN

C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.


Asunto(s)
Aeromonas hydrophila , Lubina , Moléculas de Adhesión Celular , Lectinas Tipo C , Receptores de Superficie Celular , Transducción de Señal , Animales , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Aeromonas hydrophila/inmunología , Lubina/inmunología , Lubina/metabolismo , Lubina/microbiología , Lubina/genética , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/metabolismo , Inmunidad Innata , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología
9.
Ecol Evol ; 14(4): e11311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38654715

RESUMEN

Acoustic communication plays important roles in the survival and reproduction of anurans. The perception and discrimination of conspecific sound signals of anurans were always affected by masking background noise. Previous studies suggested that some frogs evolved the high-frequency hearing to minimize the low-frequency noise. However, the molecular mechanisms underlying the high-frequency hearing in anurans have not been well explored. Here, we cloned and obtained the coding regions of a high-frequency hearing-related gene (KCNQ4) from 11 representative anuran species and compared them with orthologous sequences from other four anurans. The sequence characteristics and evolutionary analyses suggested the highly conservation of the KCNQ4 gene in anurans, which supported their functional importance. Branch-specific analysis showed that KCNQ4 genes were under different evolutionary forces in anurans and most anuran lineages showed a generally strong purifying selection. Intriguingly, one significantly positively selected site was identified in the anuran KCNQ4 gene based on FEL model. Positive selection was also found along the common ancestor of Ranidae and Rhacophoridae as well as the ancestral O. tianmuii based on the branch-site analysis, and the positively selected sites identified were involved in or near the N-terminal ion transport and the potassium ion channel functional domain of the KCNQ4 genes. The present study revealed valuable information regarding the KCNQ4 genes in anurans and provided some new insights for the underpinnings of the high-frequency hearing in frogs.

10.
Heliyon ; 10(7): e29285, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38633650

RESUMEN

Background: EEPD1 is vital in homologous recombination, while its role in cancer remains unclear. Methods: We performed multiple pan-cancer analyses of EEPD1 with bioinformatics methods, such as gene expression, gene alterations, Prognosis and enrichment analysis, tumor microenvironment, immune cell infiltration, TMB, MSI, immunotherapy, co-expression of genes, and drug resistance. Finally, RT-qPCR, EdU, and transwell assays helped investigate the impact of EEPD1 on CRC cells. Results: EEPD1 was dysregulated and correlated with bad prognosis in several cancers. GSVA and GSEA revealed that EEPD1 was primarily associated with the "WNT_BETA_CATENIN_SIGNALING," "ribonucleoprotein complex biogenesis," "Ribosome," and "rRNA processing." The infiltration of CD8+ T cells, MAIT cells, iTreg cells, NK cells, Tc cells, Tex cells, Tfh cells, and Th1 cells were negatively correlated with EEPD1 expression. Additionally, EEPD1 is significantly associated with TMB and MSI in COAD, while enhanced CRC cell proliferation and migration. Conclusions: EEPD1 was dysregulated in human cancers and correlated with various cancer patient prognoses. The dysregulated EEPD1 expression can affect tumor-infiltrating immune cells and immunotherapy response. Therefore, EEPD1 could act as an oncogene associated with immune cell infiltration in CRC.

11.
Int J Nanomedicine ; 19: 3387-3404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617801

RESUMEN

Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Receptor de Muerte Celular Programada 1 , Inmunoterapia , Sistemas de Liberación de Medicamentos , Linfocitos T CD8-positivos , Neoplasias/tratamiento farmacológico
12.
Macromol Biosci ; : e2400003, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597147

RESUMEN

Articular cartilage defects pose a significant challenge due to the limited self-healing ability of cartilage. However, traditional techniques face limitations including autologous chondrocyte expansion issues. This study aims to investigate the effects of the polylactic acid-glycolic acid (PLGA) and collagen-surface modified polylactic acid-glycolic acid (CPLGA) microspheres loaded with tetramethylpyrazine (TMP) on two cell types and the regeneration potential of articular cartilage. CPLGA microspheres are prepared by Steglich reaction and characterized. They evaluated the effect of TMP-loaded microspheres on HUVECs (Human Umbilical Vein Endothelial Cells) and examined the compatibility of blank microspheres with BMSCs (Bone marrow mesenchymal stromal cells) and their potential to promote cartilage differentiation. Subcutaneous implant immune tests and cartilage defect treatment are conducted to assess biocompatibility and cartilage repair potential. The results highlight the efficacy of CPLGA microspheres in promoting tissue regeneration, attributed to improved hydrophilicity and collagen-induced mitigation of degradation. Under hypoxic conditions, both CPLGA and PLGA TMP-loaded microspheres exhibit inhibitory effects on HUVEC proliferation, migration, and angiogenesis. Notably, CPLGA microspheres show enhanced compatibility with BMSCs, facilitating chondrogenic differentiation. Moreover, the CPLGA microsphere-composite hydrogel exhibits potential for cartilage repair by modulating angiogenesis and promoting BMSC differentiation.

13.
Int J Rheum Dis ; 27(4): e15121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562078

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are widely recognized in the pathogenesis of autoimmune disease. As a key regulatory factor, miRNAs have introduced new biomarkers for the early diagnosis of rheumatoid arthritis (RA) and provided a favorable research direction for the development of novel therapeutic targets. This study aimed to explore the hotspots of miRNA research related to RA published from different countries, organizations, and authors. METHODS: From 2001 to 2022, publications on miRNA related to RA were identified in the Web of Science database. The total and annual number of publishments, citations, impact factor, H-index, productive authors, and involved journals were collected for quantitative and qualitative comparisons. RESULTS: A total of 29 countries/regions in the world have participated in the research of miRNAs and RA over the past two decades, and China (760, 53.18%) and the United States (233, 16.31%) account for the majority of the total publications. China dominated in total citation (17881) and H-index (62). A total of 507 academic journals have published articles in related fields, and Frontiers in Immunology published the most (53, 3.71%). Chih-hsin Tang of the China Medical University has published the most papers (16, 1.2%). Stanczyk (2008) published the most cited article Altered expression of miRNAs in synovial fibroblasts and synovial tissue in rheumatoid arthritis in Arthritis and Rheumatism, with 660 citations. Inflammation is the high-frequency keyword outside of RA and miRNAs, and related researches have mainly focused on miR-146a and miR-155. CONCLUSIONS: In the past two decades, extensive and continuous research has been conducted to investigate the role of miRNAs in RA, and miRNAs are widely recognized in the pathogenesis of RA. Related research has mainly focused on miR-146a and miR-155 that have shown promising results as key factors in RA experimental models. Focusing on clinical applications and translational research may be the future research direction and hotspot based on molecular biology basic research and mechanism exploration.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , MicroARNs , Humanos , MicroARNs/genética , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/epidemiología , Artritis Reumatoide/genética , Bibliometría , Inflamación
14.
Sci Rep ; 14(1): 7662, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561397

RESUMEN

The disintegration of red-bed soft rock exhibits a strong correlation with various geological disasters. However, the investigation into the evolutionary mechanisms underlying disintegration breakage has not yet received extensive exploration. In order to comprehensively examine the disintegration characteristics of red-bed soft rock, the slake durability tests were conducted to red-bed soft rocks of varying burial depths. Subsequently, an investigation was carried out to examine the disintegration characteristics and the evolution of disintegration parameters, including the coefficient of uniformity (Cu), coefficient of curvature (Cc), disintegration rate (DRE), disintegration ratio (Dr), and fractal dimension (D), throughout the disintegration process. Finally, employing the energy dissipation theory, an energy dissipation model was developed to predicate the disintegration process of samples at various burial depths. The findings demonstrate a decrease in the abundance of large particles and a concurrent increase in the abundance of small particles as the number of drying-wetting cycles increases. Furthermore, as the number of drying-wetting cycles increases, a significant alteration is observed in the content of particles larger than 10 mm, whereas the content of particles smaller than 10 mm undergoes only minor changes. The disintegration parameters, including the curvature coefficient, non-uniformity coefficient, disintegration rate, and fractal dimension, exhibit a positive correlation with the number of drying-wetting cycles. Conversely, the disintegration index demonstrates a decreasing trend with the increasing number of cycles. Nevertheless, as the burial depth increases, a notable trend emerges in the disintegration process, characterized by a gradual increase in the content of large particles alongside a progressive decrease in the content of small particles. Concurrently, the curvature coefficient, non-uniformity coefficient, disintegration rate, and fractal dimension exhibit a gradual decline, while the durability index experiences a gradual increase. In addition, based on the principle of energy dissipation, it is revealed that the surface energy increment of red-bed soft rock increases with the increase of the number of drying-wetting cycles, but decreases with the increase of burial depth. Ultimately, by leveraging the outcomes of energy dissipation analyses, a theoretical model is constructed to elucidate the correlation between surface energy and both the number of drying-wetting cycles and burial depth. This model serves as a theoretical reference for predicting the disintegration behavior of samples, offering valuable insights for future research endeavors.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38683431

RESUMEN

The widespread occurrence of emerging brominated flame retardant tetrabromobisphenol S (TBBPS) has become a major environmental concern. In this study, a nanoscale zero-valent iron (nZVI) impregnated organic montmorillonite composite (nZVI-OMT) was successfully prepared and utilized to degrade TBBPS in aqueous solution. The results show that the nZVI-OMT composite was very stable and reusable as the nZVI was well dispersed on the organic montmorillonite. Organic montmorillonite clay layers provide a strong support, facilitate well dispersion of the nZVI chains, and accelerate the overall TBBPS transformation with a degradation rate constant 5.5 times higher than that of the original nZVI. Four major intermediates, including tribromobisphenol S (tri-BBPS), dibromobisphenol S (di-BBPS), bromobisphenol S (BBPS), and bisphenol S (BPS), were detected by high-resolution mass spectrometry (HRMS), indicating sequential reductive debromination of TBBPS mediated by nZVI-OMT. The effective elimination of acute ecotoxicity predicted by toxicity analysis also suggests that the debromination process is a safe and viable option for the treatment of TBBPS. Our results have shown for the first time that TBBPS can be rapidly degraded by an nZVI-OMT composite, expanding the potential use of clay-supported nZVI composites as an environmentally friendly material for wastewater treatment and groundwater remediation.

16.
Mol Biol Rep ; 51(1): 525, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632128

RESUMEN

BACKGROUND: A series of previous investigations have revealed that p-Smad3 plays a facilitative role in the differentiation and maturation of osteoblasts, while also regulating the expression of certain intercellular communication factors. However, the effects of p-Smad3 in osteoblasts before and after maturation on the proliferation, migration, differentiation, apoptosis and other cellular behaviors of osteoclasts have not been reported. METHODS: MC3T3-E1 cells were cultured in osteogenic induction medium for varying durations, After that, the corresponding conditioned medium was collected and the osteoclast lineage cells were treated. To elucidate the regulatory role of p-Smad3 within osteoblasts, we applied the activator TGF-ß1 and inhibitor SIS3 to immature and mature osteoblasts and collected corresponding conditioned media for osteoclast intervention. RESULTS: We observed an elevation of p-Smad3 and Smad3 during the early stage of osteoblast differentiation, followed by a decline in the later stage. we discovered that as osteoblasts mature, their conditioned media inhibit osteoclasts differentiation and the osteoclast-coupled osteogenic effect. However, it promotes apoptosis in osteoclasts and the angiogenesis coupled with osteoclasts. p-Smad3 in immature osteoblasts, through paracrine effects, promotes the migration, differentiation, and osteoclast-coupled osteogenic effects of osteoclast lineage cells. For mature osteoblasts, p-Smad3 facilitates osteoclast apoptosis and the angiogenesis coupled with osteoclasts. CONCLUSIONS: As pre-osteoblasts undergo maturation, p-Smad3 mediated a paracrine effect that transitions osteoclast cellular behaviors from inducing differentiation and stimulating bone formation to promoting apoptosis and coupling angiogenesis.


Asunto(s)
Osteoclastos , Osteogénesis , Proteína smad3 , Diferenciación Celular , Medios de Cultivo Condicionados/farmacología , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , Osteogénesis/fisiología , Animales , Ratones , Proteína smad3/genética , Proteína smad3/metabolismo
17.
Plant Cell Physiol ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38564325

RESUMEN

Drought is the most severe form of stress experienced by plants worldwide. Cucumber is a vegetable crop that requires a large amount of water throughout the growth period. In our previous study, we identified that overexpression of CsHSFA1d could improve cold tolerance and the content of endogenous jasmonic acid in cucumber seedlings. To explore the functional diversities of CsHSFA1d, we treat the transgenic plants under drought conditions. In this study, we found that the heat shock transcription factor HSFA1d (CsHSFA1d) could improve drought stress tolerance in cucumber. CsHSFA1d overexpression increased the expression levels of galactinol synthase (CsGolS3) and raffinose synthase (CsRS) genes, encoding the key enzymes for raffinose family oligosaccharide (RFO) biosynthesis. Furthermore, the lines overexpressing CsHSFA1d showed higher enzymatic activity of GolS and raffinose synthase to increase the content of RFO. Moreover, the CsHSFA1d-overexpression lines showed lower reactive oxygen species (ROS) accumulation and higher ROS-scavenging enzyme activity after drought treatment. The expressions of antioxidant genes CsPOD2, CsAPX1 and CsSOD1 were also upregulated in CsHSFA1d-overexpression lines. The expression levels of stress-responsive genes such as CsRD29A, CsLEA3 and CsP5CS1 were increased in CsHSFA1d-overexpression lines after drought treatment. We conclude that CsHSFA1d directly targets and regulates the expression of CsGolS3 and CsRS to promote the enzymatic activity and accumulation of RFO to increase the tolerance to drought stress. CsHSFA1d also improves ROS-scavenging enzyme activity and gene expression indirectly to reduce drought-induced ROS overaccumulation. This study therefore offers a new gene target to improve drought stress tolerance in cucumber and revealed the underlying mechanism by which CsHSFA1d functions in the drought stress by increasing the content of RFOs and scavenging the excessive accumulation of ROS.

18.
Nanoscale ; 16(18): 8907-8914, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38625084

RESUMEN

On-chip polarization-sensitive photodetectors are highly desired for ultra-compact optoelectronic systems. It has been demonstrated that polarization-sensitive photodetection can be realized using intrinsic chiral and anisotropy materials. However, these photodetectors can only realize the detection of either circularly polarized light (CPL) or linear polarized light (LPL) and are not applicable to multiple-polarization-sensitive photodetection. Herein, we experimentally demonstrate a metasurface-integrated semiconductor to realize multiple-polarization-sensitive photodetection at visible wavelengths. This device is composed of a MoSe2 monolayer on an H-shaped plasmonic nanostructure. The geometric chirality and anisotropy of the H-shaped nanostructure result in CPL and LPL resolved optical responses. By integrating a plasmonic metasurface with monolayer MoSe2, we converted polarization-sensitive optical absorption to the polarization-sensitive photocurrent of the device through the photoconductive effect. Polarization-sensitive photocurrent responses to both CPL and LPL are systematically investigated, which demonstrate a high photocurrent circular dichroism (CD) of 0.35 at a wavelength of 810 nm and photocurrent linear polarization (LP) of 0.4 at a wavelength of 633 nm. Our results provide a potential pathway to realize multiple-polarization-sensitive applications in medicine analysis, biology, and remote sensing.

19.
Anim Genet ; 55(3): 377-386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561945

RESUMEN

The Kazakh cattle in the Xinjiang Uygur Autonomous Region of China are highly adaptable and have multiple uses, including milk and meat production, and use as draft animals. They are an excellent original breed that could be enhanced by breeding and hybrid improvement. However, the genomic diversity and signature of selection underlying the germplasm characteristics require further elucidation. Herein, we evaluated 26 Kazakh cattle genomes in comparison with 103 genomes of seven other cattle breeds from regions around the world to assess the Kazakh cattle genetic variability. We revealed that the relatively low linkage disequilibrium at large SNP distances was strongly correlated with the largest effective population size among Kazakh cattle. Using population structural analysis, we next demonstrated a taurine lineage with restricted Bos indicus introgression among Kazakh cattle. Notably, we identified putative selected genes associated with resistance to disease and body size within Kazakh cattle. Together, our findings shed light on the evolutionary history and breeding profile of Kazakh cattle, as well as offering indispensable resources for germplasm resource conservation and crossbreeding program implementation.


Asunto(s)
Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Animales , Bovinos/genética , Secuenciación Completa del Genoma/veterinaria , China , Cruzamiento , Genoma , Desequilibrio de Ligamiento , Variación Genética , Selección Genética
20.
Heliyon ; 10(6): e27893, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524531

RESUMEN

Globally, age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment. Up to 80% of severe vision loss is caused by AMD, which is characterized by the development of choroidal neovascularization (CNV). Uncertainty exists regarding the precise pathophysiological mechanisms of CNV. It has been suggested that the interleukin (IL) IL-6/IL-6R signaling pathway is crucial in the progression of CNV. Tocilizumab (TCZ), a monoclonal antibody, binds to soluble and membrane-bound IL-6R and competitively inhibits IL-6 downstream signaling. Previous research has demonstrated that TCZ promotes several roles related to inflammation and neovascularization. However, the effects of TCZ on CNV and the underlying mechanism are still unknown. This study found that TCZ administration decreased the area and leakage of CNV lesions in the mice model of laser-induced CNV. Additionally, results demonstrated that TCZ promotes the expression of iNOS, CCL-3, CCL-5, TNF-α and inhibits the expression of Arg-1, IL-10, YM-1 and CD206. Furthermore, TCZ treatment inhibited the signal transducer and activator of transcription (STAT) STAT3/vascular endothelial growth factor (VEGF) pathway, which was activated after CNV formation. Colivelin, a STAT3 agonist, reversed the inhibitory effects of TCZ on CNV formation and macrophage polarization. In a mouse model of laser-induced CNV, our findings demonstrated that TCZ attenuated CNV formation and inhibited the leakage of CNV lesions by regulating macrophage polarization via inhibiting the STAT3/VEGF axis. TCZ is the potential therapeutic strategy for CNV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA